Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Exp Hematol Oncol ; 12(1): 102, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066554

RESUMO

Pseudomyxoma peritonei (PMP) is a rare disease characterized by a massive accumulation of mucus in the peritoneal cavity. The only effective treatment is aggressive surgery, aimed at removing all visible tumors. However, a high percentage of patients relapse, with subsequent progression and death. Recently, there has been an increase in therapies that target mutated oncogenic proteins. In this sense, KRAS has been reported to be highly mutated in PMP, with KRASG12D being the most common subtype. Here, we tested the efficacy of a small-molecule KRASG12D inhibitor, MRTX1133, in a high-grade PMP xenograft mouse model carrying a KRASG12D mutation. The results obtained in this work showed a profound inhibition of tumor growth, which was associated with a reduction in cell proliferation, an increase in apoptosis, and a reduction in the MAPK and PI3K/AKT/mTOR signaling pathways. In conclusion, these results demonstrate the high potency and efficacy of MRTX1133 in KRASG12D-PMP tumors and provide a rationale for clinical trials.

3.
Int J Pharm ; 643: 123216, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37423375

RESUMO

In this study, the ability of zein nanospheres (NS) and zein nanocapsules containing wheat germ oil (NC) to enhance the bioavailability and efficacy of quercetin was evaluated. Both types of nanocarriers had similar physico-chemical properties, including size (between 230 and 250 nm), spherical shape, negative zeta potential, and surface hydrophobicity. However, NS displayed a higher ability than NC to interact with the intestinal epithelium, as evidenced by an oral biodistribution study in rats. Moreover, both types of nanocarriers offered similar loading efficiencies and release profiles in simulated fluids. In C. elegans, the encapsulation of quercetin in nanospheres (Q-NS) was found to be two twice more effective than the free form of quercetin in reducing lipid accumulation. For nanocapsules, the presence of wheat germ oil significantly increased the storage of lipids in C. elegans; although the incorporation of quercetin (Q-NC) significantly counteracted the presence of the oil. Finally, nanoparticles improved the oral absorption of quercetin in Wistar rats, offering a relative oral bioavailability of 26% and 57% for Q-NS and Q-NC, respectively, compared to a 5% for the control formulation. Overall, the study suggests that zein nanocarriers, particularly nanospheres, could be useful in improving the bioavailability and efficacy of quercetin.


Assuntos
Nanocápsulas , Nanopartículas , Nanosferas , Zeína , Ratos , Animais , Nanocápsulas/química , Quercetina/química , Nanosferas/química , Zeína/química , Distribuição Tecidual , Caenorhabditis elegans/metabolismo , Ratos Wistar , Nanopartículas/química , Tamanho da Partícula
4.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111524

RESUMO

P2Et is the standardized extract of Caesalpinia spinosa (C. spinosa), which has shown the ability to reduce primary tumors and metastasis in animal models of cancer, by mechanisms involving the increase in intracellular Ca++, reticulum stress, induction of autophagy, and subsequent activation of the immune system. Although P2Et has been shown to be safe in healthy individuals, the biological activity and bioavailability can be increased by improving the dosage form. This study investigates the potential of a casein nanoparticle for oral administration of P2Et and its impact on treatment efficacy in a mouse model of breast cancer with orthotopically transplanted 4T1 cells. Animals were treated with either free or encapsulated oral P2Et orally or i.p. Tumor growth and macrometastases were evaluated. All P2Et treatments significantly delayed tumor growth. The frequency of macrometastasis was reduced by 1.1 times with P2Et i.p., while oral P2Et reduced it by 3.2 times and nanoencapsulation reduced it by 3.57 times. This suggests that nanoencapsulation led to higher doses of effective P2Et being delivered, slightly improving bioavailability and biological activity. Therefore, the results of this study provide evidence to consider P2Et as a potential adjuvant in the treatment of cancer, while the nanoencapsulation of P2Et provides a novel perspective on the delivery of these functional ingredients.

5.
Front Oncol ; 13: 1076500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776312

RESUMO

Introduction: Pseudomyxoma peritonei (PMP) is a rare malignant disease characterized by a massive multifocal accumulation of mucin within the peritoneal cavity. The current treatment option is based on complete cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy. However, the recurrence is frequent with subsequent progression and death. To date, most of the studies published in PMP are related to histological and genomic analyses. Thus, the need for further studies unveiling the underlying PMP molecular mechanisms is urgent. In this regard, hypoxia and oxidative stress have been extensively related to tumoral pathologies, although their contribution to PMP has not been elucidated. Methods: In this manuscript, we have evaluated, for the first time, the intratumoral real-time oxygen microtension (pO2mt) in the tumor (soft and hard mucin) and surrounding healthy tissue from five PMP patients during surgery. In addition, we measured hypoxia (Hypoxia Inducible Factor-1a; HIF-1α) and oxidative stress (catalase; CAT) markers in soft and hard mucin from the same five PMP patient samples and in five control samples. Results: The results showed low intratumoral oxygen levels, which were associated with increased HIF-1α protein levels, suggesting the presence of a hypoxic environment in these tumors. We also found a significant reduction in CAT activity levels in soft and hard mucin compared with healthy tissue samples. Discussion: In conclusion, our study provides the first evidence of low intratumoral oxygen levels in PMP patients associated with hypoxia and oxidative stress markers. However, further investigation is required to understand the potential role of oxidative stress in PMP in order to find new therapeutic strategies.

6.
J Sci Food Agric ; 103(9): 4584-4591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36852427

RESUMO

BACKGROUND: The nixtamalization process improves the nutritional and technological properties of maize. This process generates nixtamalized maize bran as a by-product, which is a source of arabinoxylans (AX). AX are polysaccharides constituted of a xylose backbone with mono- or di-arabinose substitutions, which can be ester-linked to ferulic acid (FA). The present study investigated the fine structural features and antioxidant capacity (AC) of nixtamalized maize bran arabinoxylans (MBAX) to comprehend the structure-radical scavenging capacity relationship in this polysaccharide deeply. RESULTS: MBAX presented a molecular weight, intrinsic viscosity, and hydrodynamic radius of 674 kDa, 1.8 dL g-1 , and 24.6 nm, respectively. The arabinose-to-xylose ratio (A/X) and FA content were 0.74 and 0.25 g kg-1 polysaccharide, respectively. MBAX contained dimers (di-FA) and trimer (tri-FA) of FA (0.14 and 0.07 g kg-1 polysaccharide, respectively). The main di-FA isomer was the 8-5' structure (80%). Fourier transform infrared spectroscopy confirmed MBAX molecular identity, and the second derivate of the spectral data revealed a band at 958 cm-1 related to the presence of arabinose disubstitution. 1 H-Nuclear magnetic resonance spectroscopy showed mono- and di-arabinose substitution in the xylan backbone with more monosubstituted residues. MBAX registered an AC of 25 and 20 µmol Trolox equivalents g-1 polysaccharide despite a low FA content, using ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid) and DPPH (1,1-diphenyl-2-picrylhydrazyl) methods, respectively. CONCLUSION: AC in MBAX could be related to the high A/X ratio (mainly monosubstitution) and the high 8-5' di-FA proportion in this polysaccharide. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Xilanos , Xilanos/química , Zea mays/química , Xilose , Arabinose , Polissacarídeos/química
7.
Transl Res ; 253: 68-79, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36089245

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.


Assuntos
Processamento Alternativo , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Processamento Alternativo/genética , Neoplasias da Próstata/metabolismo , Splicing de RNA , Spliceossomos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
8.
Int J Pharm ; 628: 122255, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36191813

RESUMO

The aim was to evaluate the effect of zein-based nanoparticles on the glucose homeostasis, following oral administration to Wistar rats. For this purpose, bare nanoparticles (NP, with tropism for the upper intestinal regions) and poly(ethylene glycol)-coated nanoparticles (NP-PEG), with the capability to reach the ileum and cecum of animals, were evaluated. Both formulations were spherical in shape, displaying sizes around 200 nm and a negative surface zeta potential. The oral administration of a single dose of these nanoparticles to animals (50 mg/kg) induced a significant decrease of the glycemia, compared control rats and in animals treated with the free protein (p < 0.001). Moreover, these nanoparticles improved the glycemic control against an intraperitoneal glucose tolerance test; particularly NP-PEG. These findings would be due to an increased release of glucagon-like peptide-1 (GLP-1) by l-cells, which are more abundant in distal regions of the intestine. In fact, the GLP-1 blood levels of animals treated with nanoparticles were significantly higher than controls (about 40 % and 60 % for NP and NP-PEG groups, respectively). This higher capability of NP-PEG, with respect to NP, to increase the release of GLP-1 and control glycemia would be related to its ability to reach the distal areas of the small intestine.


Assuntos
Nanopartículas , Zeína , Ratos , Animais , Ratos Wistar , Peptídeo 1 Semelhante ao Glucagon , Glicemia , Administração Oral , Insulina
9.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145283

RESUMO

Arabinoxylans (AX) microcapsules loaded with insulin were prepared by enzymatic gelation of AX, using a triaxial electrospray method. The microcapsules presented a spherical shape, with an average size of 250 µm. The behavior of AX microcapsules was evaluated using a simulator of the human intestinal microbial ecosystem. AX microcapsules were mainly (70%) degraded in the ascending colon. The fermentation was completed in the descending colon, increasing the production of acetic, propionic, and butyric acids. In the three regions of the colon, the fermentation of AX microcapsules significantly increased populations of Bifidobacterium and Lactobacillus and decreased the population of Enterobacteriaceae. In addition, the results found in this in vitro model showed that the AX microcapsules could resist the simulated conditions of the upper gastrointestinal system and be a carrier for insulin delivery to the colon. The pharmacological activity of insulin-loaded AX microcapsules was evaluated after oral delivery in diabetic rats. AX microcapsules lowered the serum glucose levels in diabetic rats by 75%, with insulin doses of 25 and 50 IU/kg. The hypoglycemic effect and the insulin levels remained for more than 48 h. Oral relative bioavailability was 13 and 8.7% for the 25 and 50 IU/kg doses, respectively. These results indicate that AX microcapsules are a promising microbiota-activated system for oral insulin delivery in the colon.

11.
Ann Surg Oncol ; 29(1): 126-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34215955

RESUMO

BACKGROUND: Pseudomyxoma peritonei (PMP) is a rare malignancy, classified according to the Peritoneal Surface Oncology Group International (PSOGI) classification, whose response to treatment remains highly heterogeneous within the high-grade (HG) category. Molecular profiling of PMP cases might help to better categorize patients and predict treatment responses. METHODS: We studied the Ki-67 proliferation rate and P53 overexpression in tissue samples from our historical cohort of HG-PMP patients. We established as cut-off levels the third quartile of each marker to perform univariate and multivariate Cox regression survival analyses. According to these results, the HG-PMP category was divided into subcategories and a new survival analysis was performed. RESULTS: A total of 90/117 patients with PMP undergoing cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) were selected for secondary analysis. The survival analysis of the HG-PMP category for preoperative variables showed that a proliferation index defined by Ki-67 >15% is a bad prognostic factor, with a hazard ratio (HR) of 3.20 (95% confidence interval [CI] 1.24-8.25). Accordingly, the HG-PMP group was divided using the Ki-67 15% cut-off. The new PSOGI/Ki-67 variable was an independent prognostic factor for overall survival (OS), with an HR of 3.74 (95% CI 1.88-7.47), and disease-free survival (DFS), with an HR of 4.184 (95% CI 1.79-9.75). The estimated 5-year OS rate was 100%, 70% and 24% for the LG-PMP, HG-PMP ≤15% and HG-PMP >15% groups, respectively (p = 0.0001), while the 5-year DFS rate was 90%, 44% and 0%, respectively (p = 0.0001). CONCLUSION: Division of the HG-PMP category of the PSOGI classification, according to the Ki-67 proliferation index, provides two well-defined subcategories, with significant differences in terms of OS and DFS, and hence high prognostic value.


Assuntos
Neoplasias Peritoneais , Pseudomixoma Peritoneal , Proliferação de Células , Humanos , Antígeno Ki-67 , Neoplasias Peritoneais/terapia , Pseudomixoma Peritoneal/terapia
12.
Polymers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451333

RESUMO

This study aimed to investigate the effect of arabinoxylans (AX) partial de-esterification with feruloyl esterase on the polysaccharide conformational behavior, topographical features, and antioxidant activity. After enzyme treatment, the ferulic acid (FA) content in AX was reduced from 7.30 to 5.48 µg FA/mg polysaccharide, and the molecule registered a small reduction in radius of gyration (RG), hydrodynamic radius (Rh), characteristic ratio (C∞), and persistence length (q). A slight decrease in α and a small increase in K constants in the Mark-Houwink-Sakurada equation for partially de-esterified AX (FAX) suggested a reduction in molecule structural rigidity and a more expanded coil conformation, respectively, in relation to AX. Fourier transform infrared spectroscopy spectra of AX and FAX presented a pattern characteristic for this polysaccharide. Atomic force microscopy topographic analysis of FAX showed a more regular surface without larger hollows in relation to AX. The antioxidant activity of FAX, compared to AX, was reduced by 30 and 41% using both 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) methods, respectively. These results suggest that feruloyl esterase treatment of AX could offer a strategy to tailor AX chains conformation, morphological features, and antioxidant activity, impacting the development of advanced biomaterials for biomedical and pharmaceutical applications.

13.
Acta Pharm Sin B ; 11(4): 989-1002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33996411

RESUMO

The aim was to evaluate the potential of mucus-permeating nanoparticles for the oral administration of insulin. These nanocarriers, based on the coating of zein nanoparticles with a polymer conjugate containing PEG, displayed a size of 260 nm with a negative surface charge and an insulin payload of 77 µg/mg. In intestinal pig mucus, the diffusivity of these nanoparticles (PPA-NPs) was found to be 20-fold higher than bare nanoparticles (NPs). These results were in line with the biodistribution study in rats, in which NPs remained trapped in the mucus, whereas PPA-NPs were able to cross this layer and reach the epithelium surface. The therapeutic efficacy was evaluated in Caenorhabditis elegans grown under high glucose conditions. In this model, worms treated with insulin-loaded in PPA-NPs displayed a longer lifespan than those treated with insulin free or nanoencapsulated in NPs. This finding was associated with a significant reduction in the formation of reactive oxygen species (ROS) as well as an important decrease in the glucose and fat content in worms. These effects would be related with the mucus-permeating ability of PPA-NPs that would facilitate the passage through the intestinal peritrophic-like dense layer of worms (similar to mucus) and, thus, the absorption of insulin.

14.
Mater Sci Eng C Mater Biol Appl ; 121: 111876, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579499

RESUMO

Device-Associated Healthcare-Associated Infections (DA-HAI) are a major threat to public health worldwide since they are associated with increased hospital stays, morbidity, mortality, financial burden, and hospital overload. A strategy to combat DA-HAI involves the use of medical devices endowed with surfaces that can kill or repel pathogens and prevent biofilm formation. We aimed to develop low-toxic protease-resistant anti-biofilm surfaces that can sensitize drug-resistant bacteria to sub-inhibitory concentrations of antibiotics. To this end, we hypothesized that polymyxin B nonapeptide (PMBN) could retain its antibiotic-enhancing potential upon immobilization on a biocompatible polymer, such as silicone. The ability of PMBN-coated silicone to sensitize a multidrug-resistant clinical isolate of Pseudomonas aeruginosa (strain Ps4) to antibiotics and block biofilm formation was assessed by viable counting, confocal microscopy and safranin uptake. These assays demonstrated that covalently immobilized PMBN enhances not only antibiotics added exogenously but also those incorporated into the functionalized coating. As a result, the functionalized surface exerted a potent bactericidal activity that precluded biofilm formation. PMBN-coated silicone displayed a high level of stability and very low cytotoxicity and hemolytic activity in the presence of antibiotics. We demonstrated for the first time that an antibiotic enhancer can retain its activity when covalently attached to a solid surface. These findings may be applied to the development of medical devices resistant to biofilm formation.


Assuntos
Preparações Farmacêuticas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Silicones
15.
Ann Surg Oncol ; 28(5): 2819-2827, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33471266

RESUMO

BACKGROUND: Several classifications have been used for pseudomyxoma peritonei (PMP), and among these, the Ronnett classification is the most commonly used. However, a new consensual Peritoneal Surface Oncology Group International (PSOGI) classification has recently been proposed. Nonetheless, to date, the ability of the PSOGI classification to predict survival based on its different disease histologic categories has not been validated. METHODS: This study enrolled 117 patients with PMP who had undergone cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) between 1997 and 2020. Cox proportional hazards regression models and time-dependent curve receiver operating characteristic (ROC) analyses were used to assess the predictive capacity of both classification systems for the overall survival (OS) and disease-free survival (DFS) of these patients. RESULTS: Significant differences in the 5-year OS rate were found for the different histologic grades according to each of the classifications. The completeness of cytoreduction score (CCS) was identified as a factor that predicted patient OS prognosis (p = 0.006). According to the time-dependent ROC curves at the "100" time point, adjusted by the CCS and DFS, the capacity to predict OS was optimal and achieved an area under the curve (AUC) of about 69% for OS and approximately 62% for DFS. CONCLUSIONS: Both the Ronnett and PSOGI classifications were able to predict survival optimally for this patient cohort. However, when the classifications were adjusted by the CCS, the predictive availability for OS was better with the PSOGI classification than with the Ronnett classification.


Assuntos
Hipertermia Induzida , Neoplasias Peritoneais , Pseudomixoma Peritoneal , Procedimentos Cirúrgicos de Citorredução , Humanos , Neoplasias Peritoneais/terapia , Modelos de Riscos Proporcionais , Pseudomixoma Peritoneal/cirurgia , Estudos Retrospectivos
16.
Drug Deliv Transl Res ; 11(2): 647-658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515186

RESUMO

The aim was to evaluate the potential of nanocarriers, based on the coating of zein nanoparticles (ZNP) with a Gantrez® AN-PEG conjugate (GP), for the oral delivery of insulin. ZNP-GP displayed less negative surface charge and a 14-fold higher diffusion coefficient in pig intestinal mucus than ZNP. Both nanoparticles showed a spherical shape and an insulin load of 77.5 µg/mg. Under simulated gastric conditions, ZNP-GP released significantly lower amount of insulin than ZNP, while under simulated intestinal conditions, both types of nanoparticles displayed similar behaviour. In Caenorhabditis elegans wild-type N2, grown under high glucose conditions, insulin treatments reduced glucose and fat accumulation without altering the growth rate, the worm length, or the pumping rate. The effect was significantly greater (p < 0.001) when insulin was nanoencapsulated in ZNP-GP compared with that encapsulated in ZNP or formulated in solution. This would be related to the highest capability of ZNP-GP to diffuse in the dense peritrophic-like layer covering intestinal cells in worms. In daf-2 mutants, the effect on fat and glucose reduction by insulin treatment was suppressed, indicating a DAF-2 dependent mechanism. In summary, ZNP-GP is a promising platform that may offer new opportunities for the oral delivery of insulin and other therapeutic proteins.


Assuntos
Nanopartículas , Zeína , Animais , Caenorhabditis elegans , Portadores de Fármacos , Insulina , Suínos
17.
Pharmaceutics ; 14(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35056935

RESUMO

Zein, the major storage protein from corn, has a GRAS (Generally Regarded as Safe) status and may be easily transformed into nanoparticles, offering significant payloads for protein materials without affecting their stability. In this work, the capability of bare zein nanoparticles (mucoadhesive) and nanoparticles coated with poly(ethylene glycol) (mucus-permeating) was evaluated as oral carriers of insulin (I-NP and I-NP-PEG, respectively). Both nanocarriers displayed sizes of around 270 nm, insulin payloads close to 80 µg/mg and did not induce cytotoxic effects in Caco-2 and HT29-MTX cell lines. In Caenorhabditis elegans, where insulin decreases fat storage, I-NP-PEG induced a higher reduction in the fat content than I-NP and slightly lower than the control (Orlistat). In diabetic rats, nanoparticles induced a potent hypoglycemic effect and achieved an oral bioavailability of 4.2% for I-NP and 10.2% for I-NP-PEG. This superior effect observed for I-NP-PEG would be related to their capability to diffuse through the mucus layer and reach the surface of enterocytes (where insulin would be released), whereas the mucoadhesive I-NP would remain trapped in the mucus, far away from the absorptive epithelium. In summary, PEG-coated zein nanoparticles may be an interesting device for the effective delivery of proteins through the oral route.

18.
Drug Deliv Transl Res ; 10(6): 1601-1611, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32514704

RESUMO

The aim of this work was to evaluate oral nanocarriers, prepared from zein nanoparticles coated with a poly(anhydride)-thiamine conjugate (GT), for the delivery of insulin. Nanoparticles displayed a size of 250 nm with a negative surface charge, and an insulin loading of 80 µg/mg. Under simulated gastric conditions, GT-coated nanoparticles released a significantly lower amount of insulin than bare ones; whereas in simulated intestinal conditions, both types of nanoparticles displayed a similar behavior. The effect of insulin on the lipid metabolism of C. elegans under high glucose conditions, characterized by a reduction of the fat content, was also investigated. The effect was significantly higher for the nanoencapsulated forms of insulin than for the free protein (p < 0.001). This effect was two times higher for GT-coated nanoparticles than for bare ones. In rats, the hypoglycemic effect and the pharmacokinetic profile of insulin-loaded nanoparticles orally administered (50 IU/kg) were evaluated. The glycemia of animals slowly decreased reaching a minimum 6-10-h post-administration, with a maximum decrease of about 60%. The pharmacological availability of nanoencapsulated insulin was 13.5%. In serum, nanoparticles provided a maximum of insulin 4-h post-administration, and its relative oral bioavailability was 5.2% (compared with a sc formulation of insulin). Graphical abstract.


Assuntos
Portadores de Fármacos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Nanopartículas , Zeína , Administração Oral , Animais , Caenorhabditis elegans , Tamanho da Partícula , Ratos
19.
Artigo em Inglês | MEDLINE | ID: mdl-32408691

RESUMO

The purpose of the present work was to explore whether fourth-grade physical education students improved their game performance, knowledge and psychosocial variables with Teaching Games for Understanding (TGfU) to a greater extent after an eight-lesson period in comparison to a 14-lesson period. The study followed a mixed-methods approach in which the design consisted of a first assessment, a second assessment after Lesson 9 (eight-lesson period) and a third assessment after Lesson 16 (14-lesson period). A TGfU floorball intervention was carried out between assessments. The participants (n = 40) were in their fourth year of elementary education. According to students' background and setting, we decided to implement three broad and interrelated strategies to enact the intervention built on the TGfU pedagogical features. Data were collected through Game Performance Assessment Instrument, knowledge questionnaire, enjoyment, perceived competence and intention to be physically active scales and semi-structured interviews. Quantitatively, Friedman's χ2 was used to explore differences in the variables and Wilcoxon's Z post-hoc comparisons were performed to determine: (a) first-second and first-third assessment differences; and (b) second-third assessment differences. Qualitatively, data were open and axial coded line-by-line and incident-to-incident in sub-themes. The quantitative results show no significant differences between the two periods (p > 0.05). However, there were improvements after both periods compared with the first assessment (p < 0.05). The qualitative information supported that the pedagogical strategies implemented could be key to explain the similarities between the two practice volumes. In conclusion, the amount of practice should not be considered as the only variable in the design of interventions with TGfU.


Assuntos
Educação Física e Treinamento , Estudantes , Criança , Humanos , Prazer , Comportamento Social , Estudantes/psicologia , Inquéritos e Questionários
20.
Int J Pharm ; 581: 119289, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243968

RESUMO

Proteins represent a group of biopolymers with interesting properties to be employed as raw materials in the preparation of nanoparticles for drug delivery purposes. Due to the inherent properties of proteins (i.e., biodegradability, amphiphilic properties, etc.) the resulting nanoparticles can be considered as versatility platforms for a variety of applications. Moreover, some proteins possess a GRAS (Generally Recognized as Safe) status or are considered as excipients by different Regulatory Agencies. As result of this, the resulting nanoparticles and potential translation to clinic would be facilitated, compared to other materials (i.e., polymers). This review is focused on the main proteins employed in the preparation of nanoparticles as well as the procedures permitting their transformation into nanoparticles able of accommodating a high variety of bioactive compounds and drugs. Moreover, the review also provides examples of application of nanoparticles prepared from albumins, globulins, prolamins or macromolecules derived from proteins.


Assuntos
Albuminas/química , Sistemas de Liberação de Medicamentos/métodos , Globulinas/química , Nanopartículas/química , Prolaminas/química , Albuminas/administração & dosagem , Albuminas/metabolismo , Animais , Caseínas/administração & dosagem , Caseínas/química , Caseínas/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Globulinas/administração & dosagem , Globulinas/metabolismo , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Prolaminas/administração & dosagem , Prolaminas/metabolismo , Zeína/administração & dosagem , Zeína/química , Zeína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...